

SurfacePrep

At SurfacePrep, we pride ourselves on offering a comprehensive range of high-quality, durable blast nozzles. Our team is always on hand to advise on the best nozzle for your specific needs and operating conditions. We ensure you get the performance you need without unnecessary wear and expense.

The Basics of Blast Nozzles

COMPRESSED AIR REQUIREMENTS & ABRASIVE CONSUMPTION								
Nozzle Orifice	Pressure At The Nozzle (psi)						Air, Power & Abrasive Requirements	
	50	60	70	80	90	100	125	
No. 2 1/8"	11	13	15	17	18.5	20	25	Air (cfm)
	67	77	88	101	112	123	152	Abrasive (lb/hr)
	2.5	3	3.5	4	4.5	5	5.5	Compressor (hp)
No. 3 3/16"	26	30	33	38	41	45	55	Air (cfm)
	150	171	196	216	238	264	319	Abrasive (lb/hr)
	6	7	8	9	10	10	12	Compressor (hp)
No. 4 1/4"	47	54	61	68	74	81	98	Air (cfm)
	268	312	354	408	448	494	608	Abrasive (lb/hr)
	11	12	14	16	17	18	22	Compressor (hp)
No. 5 5/16"	77	89	101	113	126	137	168	Air (cfm)
	468	534	604	672	740	812	982	Abrasive (lb/hr)
	18	20	23	26	28	31	37	Compressor (hp)
No. 6 3/8"	108	126	143	161	173	196	237	Air (cfm)
	668	764	864	960	1052	1152	1393	Abrasive (lb/hr)
	24	28	32	36	39	44	52	Compressor (hp)
No. 7 7/16"	147	170	194	217	240	254	314	Air (cfm)
	896	1032	1176	1312	1448	1584	1931	Abrasive (lb/hr)
	33	38	44	49	54	57	69	Compressor (hp)
No. 8 1/2"	195	224	252	280	309	338	409	Air (cfm)
	1160	1336	1512	1680	1856	2024	2459	Abrasive (lb/hr)
	44	50	56	63	69	75	90	Compressor (hp)

The lifespan of a blast nozzle in an abrasive air blast system is significantly influenced by the material of the nozzle and the operating conditions, namely the PSI and CFM levels. By understanding these factors and choosing a nozzle based on your specific needs, you can maximise efficiency, reduce costs, and maintain the high-quality output that your projects demand.

How PSI Affects Nozzle Lifespan

Increased PSI levels generally result in faster wear on your blast nozzles due to the higher force of abrasives hitting the nozzle.

For example:

- At 90 PSI, a tungsten carbide nozzle might last up to 300 hours.
- Increase the pressure to 120 PSI, and the same nozzle might only last up to 200 hours.

Ceramic Nozzles

- Lifespan: Approximately 20-40 hours
- Characteristics: Cost-effective, but tend to wear out relatively quickly. Ideal for smaller, intermittent projects.

Tungsten Carbide Nozzles

- Lifespan: Around 200-300 hours
- Characteristics: Wear-resistant, commonly used in industrial applications, and moderately priced. These nozzles offer a balance between durability and cost.

Silicon Carbide Nozzles

- Lifespan: Approximately 300-400 hours
- Characteristics: Very hard and exceptionally wear-resistant, lightweight, and thermally stable. Perfect for heavy industrial use where longevity is key.

Boron Carbide Nozzles

- Lifespan: About 700-1000 hours
- Characteristics: Extremely wear-resistant, and the most durable of commonly used materials. Although they come at a higher price point, their longevity often justifies the cost.

The Role of CFM in Nozzle Wear

Higher CFM usually results in increased abrasive velocity, and consequently, faster wear of the nozzle. The more volume of air and abrasive that passes through, the quicker the nozzle wears.

For example:

- A tungsten carbide nozzle operating at 350 CFM might last around 300 hours.
- The same nozzle operating at 450 CFM might last only around 200 hours.

Maximizing Nozzle Lifespan to get the most out of your blast nozzle.

Operate at the lower, yet effective, PSI and CFM levels to reduce wear. Regularly inspect your nozzles for cracks or orifice wear as these could lead to premature damage and ultimately failure of the nozzle. It's best to replace them before they wear out to the point of affecting your work or damaging other components of your system. Choose the right nozzle material for your application. Sometimes investing in a more expensive nozzle saves money in the long run due to its extended lifespan.

